FROM RESEARCH TO INDUSTRY

TOWARDS LESS TOXIC QUANTUM DOTS

<u>F. Dussert</u>, K.D. Wegner, A. Tarantini, D. Beal, D. Boutry, S. Motellier, G. Sarret, P. Reiss, M. Carrière

Quantum dots (QDs):

- Colloidal fluorescent semi-conductor nanocrystals
- Unique optical properties
- To enhance the purity and accuracy of color reproduction

Applications:

Optoelectronics

Photovoltaic cells

Biomedical imaging

QDs market:

CdSe (Cd classified carcinogenic by IARC and banned)

Indium based QDs

Alternatives to reduce toxicity

Display screens

Toxic effects of such alternative QDs are poorly documented

Fanny Dussert - NANOSAFE 2018 | PAGE 2

STRATEGY FOR SAFER-BY-DESIGN QDS

FROM RESEARCH TO INDUST

PREVIOUS RESULTS

STRATEGY FOR SAFER-BY-DESIGN QDS

OBJECTIVES

To evaluate the toxic effects and fate of these new generations of QDs throughout their life cycle:

QDs DESIGN

Synthesis:

*Shell of zinc (Zn) and selenium (Se) which are gradually substituted during synthesis with Zn and sulfur (S)

Ligand exchange:

Penicillamine

FROM RESEARCH TO INDUSTR

CLIMATIC CHAMBER

Aging of QDs solutions:

QDs 1µM (PBS) + CTL PBS

Model: QSUN Xe-1 BC with xenon arc lamp (Plateforme HYBRIDEN)

FROM RESEARCH TO INDUST

CELL EXPOSURES

Primary keratinocytes extraction from skin explants:

The most relevant target is the skin

FROM RESEARCH TO INDUSTRY

STEM-EDX ANALYSIS OF QDS

CHARACTERIZATION OF QDS

UV-visible measurement:

Photoluminescence measurement:

Photoluminescence of QD at 1 μ M in PBS after an aging of 0, 15min, 30min, 45min, 1h, 1h30, 2h, 4h and 6h.

Double shell increases the fluorescence and resistance of QD to aging
The thicker the shell, the greater the effect

FROM RESEARCH TO INDUST

Cez

CYTOTOXICITY

CONCLUSION & PERSPECTIVES

Conclusion:

- □ Physico-chemical transformation is very rapid
- Dissolution occurring during the first two hours of aging
- □ Pristine form QDs are not very cytotoxic
- □ Transformed QDs are much more toxic

Shell design of QDs:

- Reduces the toxicity
- Slows the degradation

But does not totally prevent from dissolving and releasing toxic In ions

Perspectives:

- □ Chemical transformation during aging (EXAFS)
- □ Cell accumulation (ICP-MS)
- □ intracellular distribution (MET-EDX)

INSTITUT NANOSCIENCES ET CRYOGÉNIE

THANK YOU FOR YOUR ATTENTION!

F. DUSSERT fanny.dussert@cea.fr PROM RESEARCH TO INDUSTRY

STEM-EDX ANALYSIS OF QDS

